Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration

Axolotls are uniquely able to mobilize neural stem cells to regenerate all missing regions of the spinal cord. How a neural stem cell under homeostasis converts after injury to a highly regenerative cell remains unknown. Here, we show that during regeneration, axolotl neural stem cells repress neurogenic genes and reactivate a transcriptional program similar to embryonic neuroepithelial cells. ...

متن کامل

19-P040 Molecular analysis of spinal cord regeneration in Axolotl

sue is known as transdifferentiation, in which the local cells are able to dedifferentiate (lose the characteristics of their origin) and subsequently redifferentiate. Our lab has shown by transient lineage tracing that spinal cord cells (radial glial cells) can migrate into surrounding tissues and contribute to non-neural cells during regeneration [Science 298 (2002) 1993–1996]. In order to fo...

متن کامل

O27: The Role of Hydrogels and Cell Based Therapies in Regeneration of Spinal Cord Injury

Spinal cord injury (SCI) is one of the devastating conditions leading to functional and neurological deficits following road traffic accidents. To date, there is no definite treatment for repairing damaged spinal cord tissue. In this regard, cell therapy opens a new window in front of scientists by using different cells such as mesenchymal stem cells, olfactory ensheathing cells, Schwann cells,...

متن کامل

Physiological Genomics of Spinal Cord and Limb Regeneration in a Salamander, the Mexican Axolotl

OF DISSERTATION James Robert Monaghan The Graduate School University of Kentucky 2009

متن کامل

A clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted and multipotent progenitors.

Complete regeneration of the spinal cord occurs after tail regeneration in urodele amphibians such as the axolotl. Little is known about how neural progenitor cells are recruited from the mature tail, how they populate the regenerating spinal cord, and whether the neural progenitor cells are multipotent. To address these issues we used three types of cell fate mapping. By grafting green fluores...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: eLife

سال: 2021

ISSN: 2050-084X

DOI: 10.7554/elife.55665